Cogeneration
Project Drawdown defines cogeneration as: auto producer [1] combined heat and power (CHP) systems running on natural gas. This solution replaces conventional heat and power technologies such as coal, natural gas, and oil power plants, allowing for greater efficiency and fuel optionality. Cogeneration is considered here as a “bridge” technology toward a 100% clean, renewable energy system.
In 2014, cogeneration systems accounted for about 15 percent of global power generation. In terms of heat supply, cogeneration units represented 6.8 percent. The majority of currently installed cogeneration units are fueled by fossil fuels. Coal represents around 54 percent of total CHP electricity generation, natural gas provides 39 percent, and oil CHP generates 2.5 percent of electricity from cogeneration systems. However, this also depends on the application, as an increasing number of cogeneration systems utilize renewable energy sources. Globally, 55 percent of all CHP systems generating electricity are auto producers, while 45 percent are main activity producers.
Methodology
This analysis focuses on auto producer CHP systems running on natural gas. This application of CHP currently represents around 3.2 percent of total electricity generation (718 terawatt-hours). The analysis in this solution is not looking at district heating, and discounts the potential for increase in diversified renewables as part of the CHP generation mix. The topics of district heating and the use of renewable energy sources in CHP plants are considered in other solutions.
Total Addressable Market [2]
Two total addressable markets are considered for combined heat and power, one based on projected global heat supply and the other on electricity generation in terawatt-hours from 2020-2050.
Adoption Scenarios [3]
Impacts of increased adoption of cogeneration from 2020-2050 were generated based on three growth scenarios, which were assessed in comparison to a Reference Scenario where the solution’s market share was fixed at the current levels.
The share of electricity generation from CHP – currently around 15 percent (Greenpeace, 2015) – was applied to total electricity generation from the reference scenarios of three electricity generation models [4] to get total CHP electricity generation. Based on results from the Greenpeace Energy [R]evolution Scenario, the share of auto producers was estimated to grow linearly from the current 54.7 percent to 61.3 percent by 2050. Additionally, it is assumed that the share of auto producers running on natural gas could grow from the current 38.8 percent to nearly 70 percent. To avoid double counting, the remaining 30 percent are considered to be using waste-to-energy, biomass, and geothermal CHP systems. [5]
For cogeneration, three scenarios were developed:
- Plausible Scenario: This scenario follows a customized adoption trajectory derived from the average figures of the three reference scenarios. The Plausible Scenario projects that cogeneration’s market share of electricity generation could reach 5.67 percent by 2050.
- Drawdown Scenario: Because cogeneration is considered a bridge technology, the Drawdown Scenario assumes a similar growth as the Plausible Scenario, but peaks in 2030 and begins to decline as a share of electricity and heat generation until 2050, when natural gas CHP is assumed to be no longer required to meet demand.
- Optimum Scenario: Because cogeneration is considered a bridge technology, the Optimum Scenario assumes a similar growth as the Plausible Scenario, but peaks in 2030 and begins to decline as a share of electricity and heat generation until 2050, when natural gas CHP is assumed to be no longer required to meet demand.
Financial Model
The financial inputs used in the model assume an average installation cost of US$1,845 per kilowatt [6] with a learning rate of 2 percent; this also applies to conventional technologies cogeneration is replacing, including natural gas, coal, and oil power plants. An average capacity factor of 78 percent is used for CHP plants, compared to 55 percent for conventional technologies. Variable operation and maintenance costs of US$0.012 per kilowatt-hour and fixed costs of US$85.4 per kilowatt are considered for cogeneration, compared to US$0.005 and US$33.0, respectively, for the conventional electricity generation technologies, and fixed costs of US$19.89 per kilowatt for conventional boilers (oil) for heat production. Fuel prices are derived from the last nine years’ average of natural gas and fuel oil prices for industry (IEA, 2016).
Integration [7]
Through the process of integrating cogeneration with other solutions, the total addressable market for electricity generation technologies was adjusted to account for reduced demand resulting from the growth of more energy-efficient technologies, [8] as well as increased electrification from other solutions like electric vehicles and high-speed rail. Grid emissions factors were calculated based on the annual mix of different electricity-generating technologies over time. Emissions factors for each technology were determined through a meta-analysis of multiple sources, accounting for direct and indirect emissions.
Results
The results for the Plausible Scenario indicate that increasing cogeneration from 3.2 percent in 2014 to 5.67 percent of world electricity generation, while increasing the heat supply met by CHP from 1.7 percent to 2.9 percent by 2050, could cost an additional US$279.25 billion compared to the Reference Scenario. Net savings from cogeneration from 2020-2050 would be near US$566.93 billion, however, due largely to lower fuel use and costs.
Under the Plausible Scenario, cogeneration could reduce a cumulative 3.97 gigatons of carbon dioxide-equivalent greenhouse gas emissions from 2020-2050. However, it is considered to be a transitional solution since it still uses fossil fuels. In both the Drawdown and Optimum Scenarios, the peak and decline of natural gas CHP results in an increase in greenhouse gas emissions of 8.7 and 8.76 gigatons of carbon dioxide-equivalent over 2020-2050, respectively, when compared to a Reference Scenario. This is due to assumptions made regarding adoption trajectories, system dynamics analysis, and integration with other solutions.
Discussion
The results of this study confirm that economic, energy, and climate benefits would result from the increased adoption of combined heat and power technologies. Due to better efficiency, cogeneration plants can produce the same amount of heat and power using less fuel than separate heat and power production systems can.
Development of the systems can be expensive in some cases, and cannot truly be deemed sustainable in the long term when they are used to extract efficiencies from fossil fuels. Nevertheless, using natural gas to replace current oil and coal CHPs, oil boilers, and conventional grid technologies brings significant reductions of greenhouse gas and air pollutant emissions.
[1] Entities generating electricity and/or heat wholly or partially for their own use as an activity which supports their primary activity.
[2] For more about the Total Addressable Market for the Energy Sector, click the Sector Summary: Energy link below.
[3] To learn more about Project Drawdown’s three growth scenarios, click the Scenarios link below. For information on Energy Sector-specific scenarios, click the Sector Summary: Energy link.
[4] MESSAGE-Macro REFpol Scenario, IMAGE-Timer REFpol Scenario (AMPERE, 2014); IEA ETP 6°C Scenario (2016).
[5] See the waste-to-energy, biomass, and geothermal solutions on the Project Drawdown
website. http://www.drawdown.org/solutions/.
[6] All monetary values are presented in US2014$.
[7] For more on Project Drawdown’s Energy Sector integration model, click the Sector Summary: Energy link below.
[8] For example: LED lighting and heat pumps.